MOLECULAR TESTING FOR HEMATOLOGIC MALIGNANCIES

October 5, 2019

Shuko Harada, M.D. Division of Genomics Diagnostic and Bioinformatics UAB Department of Pathology

OUTLINE

Introduction (Understand Molecular Testing)

- When we need to do molecular test (utility)
- What can be measured (target)
- How to measure (technology)
- Lymphoma
 - Case 1 IGH and TCR rearrangement (clonality)
 - Case 2 Specific translocations (quantitative)
- > Myeloid Disorders MPD, Leukemia, MDS
 - Case 3 Specific translocations (fusion gene; qualitative)
 - Case 4 Specific mutations for diagnosis
 - Case 5 Next generation sequencing

WHEN DO WE TEST – MAJOR INDICATIONS

- Diagnosis
 - neoplastic vs. reactive (and beyond)
 - Iymphoma
- Classification
 - ✓ based upon the genetic abnormalities AML
- > Prognosis
 - in otherwise homogeneous diseases CN-AML
- Predictive Therapeutic choice
 - Targeted therapy CML, APL, and more
- Monitoring/MRD
 - Minimal residual disease monitoring for early recurrence detection CML

WHAT TO TEST – MOLECULAR TARGETS

- Gene rearrangement (e.g. translocation)
- Mutations (point mutation, insertion, deletion)
- Gain and losses of genetic content
 - Trisomy, duplication, amplification
 - Monosomy, deletion, silencing

Missense mutation

HOW TO TEST – TECHNIQUES

- Chromosomal analysis
 - Cytogenetics (karyogram)
 - FISH
 - Array
 - CGH (Comparative genomic hybridization)
 - SNP array
- Molecular analysis (DNA/RNA)
 - Southern blot
 - PCR based assay
 - Fragment analysis
 - Real-time PCR
 - Sequencing
 - Next Generation Sequencing

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Valid Size Range = 250-295 bp

EXAMPLE 1: LYMPHOPROLIFERATIVE DISORDERS – NEOPLASTIC VS REACTIVE

47 year old male with erythematous, finely scaling lesions involving the trunk, buttocks and thighs, sparring.

Present for one year and progressing slowly

Mildly purpuric

Topical steroid treatment with no improvement

LYMPHOID LESION – SKIN BIOPSY

CD 3

Dermal and epidermal CD3+ lymphocytes infiltrates:

→ Reactive (eczematous process)
 VS
 Neoplastic (T cell lymphoma)

T CELL RECEPTOR GENE REARRANGEMENT

REACTIVE VS NEOPLASTIC

REACTIVE VS NEOPLASTIC (POLYCLONAL VS CLONAL)

- 1. Clonal
- 2. Clonal
- 3. 10% clonal
- 4. Non-clonal

THIS CASE: NEOPLASTIC (LYMPHOMA)

- T cell receptor gene rearrangement – clonal
- Support the diagnosis of Primary cutaneous T cell lymphoma
- Useful in atypical lymphoproliferation with limited tissue
- Not useful in diagnosing specific entities

EXAMPLE 2: LYMPHOMA -"QUANTITATIVE" REARRANGEMENT

24 year old male with a history of HIV, worsening lymphadenopathy and a new left orbit mass.

Orbit biopsy: extensive infiltrate of mid-size lymphocytes. BCL6, CD10, CD20 positive; CD5 negative Ki-67 ~100%, EBER positive

Diagnosis?

What test do you want to order?

BURKITT LYMPHOMA

- Proto-oncogene MYC translocated to Immunoglobulin gene during VDJ recombination, class switching, or somatic hypermutation.
- Controlled by Ig regulatory apparatus, leading to overproduction of protein (c-myc))
- All cases carry translocation between chromosome 8 and 14q32[IgH], 2[kappa] or 22[lambda].

FLUORESCENT IN SITU HYBRIDIZATION (FISH)

section

slide

- Use a <u>labeled</u> complementary DNA or RNA strand (probe) to localize a specific DNA or RNA sequence in a portion or section of tissue (*in situ*)
- Fluorescent probe Labeled for detection: FISH probe **Proteinase digestion** Probe hybridization Fluorescent Wash **Enzymatic detection** Probe: FISH HE UNIVERSITY OF AT BIRMINGHAM

FISH - BREAK APART PROBES

Abnormal

The red and green probes each bind to sequences upstream and downstream of the loci of interest. FISH analysis of normal interphase nuclei shows two yellow (red/green) signals

In a neoplastic cell carrying a reciprocal translocation, one of the yellow (red/green) signals splits resulting in separated red and green signals, in addition to the yellow (red/green) signal from the normal chromosome

* Only one FISH signal is shown per metaphase chromosome to aid clarity but in practice two signals (representing the two chromatids) can be visible

THIS CASE: BURKITT LYMPHOMA

MYC FISH - positive for rearrangement

Mantle cell lymphoma Follicular lymphoma MALT/MZL

DLBL CLL/SLL t(11;14)(q13;q32) CCND1 (BCL1)-IGH **IGH-BCL2** t(14;18)(q32;q21) t(11;18)(q21;q21) API2-MALT1 - stomach t(14;18)(q32;q21) **IGH-MALT1** also trisomy 3 t(14;18) 30%; abnormalities of 3q27 (BCL6) del(13q14) – miRNA, 55%, best +12 - ?CDK4, 16%, middle del(11q22) – ATM, 18%, second worst del(17p13) – TP53, 7%, worst

EXAMPLE 3: LEUKEMIA – "QUALITATIVE" REARRANGEMENT

65 year old female with fatigue and weight loss.

CBC: WBC 150,000/ mm³

Various stage of maturation on differential

Diagnosis?

What test do you want to order?

CHRONIC MYELOID LEUKEMIA (CML)

Translocation of BCR-ABL1 genes - by cytogenetics

FUSION GENE CREATES NEW TYROSINE KINASE: "QUALITATIVE" PROBLEM

DETECTION OF *BCR-ABL1* BY FISH (FLUORESCENT IN SITU HYBRIDIZATION)

Translocation (–)

FIRST EXAMPLE OF TARGETED THERAPY

MINIMAL RESIDUAL DISEASE MONITOR – BY QUANTITATIVE RT-PCR

EXAMPLE 4: Myeloproliferative Neoplasms – Specific Mutation For Diagnosis

61 year old female with history of congestive heart failure and osteoarthritis. abnormal CBC was noted.

CBC: Hb 19.0 g/dL; Hct 61% WBC 10,060 Platelet 361,0000

Differential Diagnosis?

What test do you want to order?

MYELOPROLIFERATIVE NEOPLASMS AND JAK2 MUTATION

- > BCR/ABL translocation in CML is paradigm for molecular diagnostics
- In 2005, 5 labs simultaneously described a point mutation (V617F) in JAK2 in most other MPDs
- The next paradigm for CML?
- V617F mutations seen:
 - PV: ~95%
 - CIMF: ~50%
 - ET: ~50%
- Constitutively active JAK2 stimulate cell proliferation

THE UNIVERSITY OF ALABAMA AT BIRMINGH

JAK2 V617F MUTATION DETECTION

- Direct Sequencing
- ARMS-PCR / ASO-PCR
- RFLP
- Melt curve analysis
- Pyrosequencing
- Next Generation Sequencing

ALLELE SPECIFIC PCR / ARMS (AMPLIFICATION REFRACTORY MUTATION SYSTEM)

This case: JAK2 V617F 86.5% positive → Support the diagnosis of Polycythemia Vera

THERE IS MORE...

- JAK2 exon 12 mutations
 only in PV (thus ~100% PV have a JAK2 mutation)
- MPL mutations
 in rare cases (~5-10%) of PMF and ET, but not PV
- CALR (calreticulin) mutations
 - in 25-35% of ET and MF (in 2013)
 - MPL and CALR: new diagnostic criteria for PMF, ET
- "Triple negative"
 - 10-15% of ET, PMF

(Tefferi A, et al. Blood 124: 2507-2513, 2014)

EXAMPLE 5: ACUTE MYELOID LEUKEMIA – NEXT GENERATION SEQUENCING

68 year old female with fatigue and dyspnea.

CBC: WBC 16,600/ mm³ with 34% blasts Hgb 8.5 g/dL Platelet 80,000/ mm³

Flow cytometry: 55% myeloblasts (CD34, CD117, CD13, CD33, CD7 and HLA-DR positive)

Bone marrow aspirate and biopsy: AML, NOS, 64% myeloblasts

What test do you want to order?

DIAGNOSTIC: GENETIC ABNORMALITIES IN AML (WHO)

AML with recurrent genetic abnormalities

- AML with t(8;21)(q22;q22) (M2)
- AML with inv(16)(p13.1q22)
 - or t(16;16)(p13.1;q22) (M4eo)
- APL with t(15;17)(q22;q12) (M3)
- AML with t(9;11)(p22;q23) (monocytic) KMT2A (MLL)-MLLT3

RUNX1-RUNX1T1 (AML1-ETO)

CBFB-MYH11

PML-RARA

- AML with t(6;9)(p23;q34) (basophilia and multilineage dysplasia) DEK-NUP214
- AML with inv(3)(q21q26.2)or t(3;3)(q21;q26.2)

GATA2, MECOM

- AML (megakaryoblastic) with t(1;22)(p13;q13) RBM15-MKL1
- AML with BCR-ABL1
- AML with gene mutations
- AML with mutated NPM1 (nucleophosmin)
- AML with biallelic mutation of CEBPA
- AML with mutated RUNX1

LABAMA AT BIRMINGHAM

AML – CYTOGENETIC STRATIFICATION

AML – Stratification based on FLT3 and NPM1

AML – Prognostic Relevance of Integrated Genetic Profiling

(Patel JP, et al., NEJM 366 (12): 1079-1089, 2012)

Multivariate Risk Classification of Patients with Intermediate Risk AML

Revised Risk Stratification of Patients with AML on Basis of Integrated Genetic Analysis

A	Revised Risk Stratification				
	Cytogenetic Classification		Overall Risk Profile		
	Favorable	Any		Favorable	
	Normal karyo- type or inter- mediate-risk ctyogenetic lesions	FLT3-ITD-negative	Mutant NPM1 and IDH1 or IDH2	Favorable	
		FLT3-ITD-negative	Wild-type ASXL1, MLL-PTD, PHF6, and TET2		
		FLT3-ITD- negative or positive	Mutant CEBPA	Intermediate	
		FLT3-ITD-positive	Wild-type MLL-PTD, TET2, and DNMT3A and trisomy 8-negative		
		FLT3-ITD-negative	Mutant TET2, MLL-PTD, ASXL1, or PHF6		
		FLT3-ITD-positive	Mutant TET2, MLL-PTD, DNMT3A, or trisomy 8, without mutant CEBPA	Unfavorable	
	Unfavorable				

PROGNOSTIC AND PREDICTIVE: GENETIC ALTERATIONS IN AML

Gene	Frequency in CN-AML	Prognostic Impact	Target Therapy	Drugs
NPM1	30-45%	Favorable		
FLT3-ITD	28-34%	Unfavorable in high allelic ratio	Yes	Sorafenib, Quizartinib, Gilteritinib, Midostaurin
FLT3-TKD	11-14%	Neutral	Yes	Quizartinib, Gilteritinib, Midostaurin
IDH1 or IDH2	15-30%	Favorable	Yes	Ivosidenib (IDH1), Enasidenib (IDH2)
Biallelic CEBPA	10-18%	Favorable		
RAS	25% NRAS, 15% KRAS	Neutral	Yes	Cobimetinib, other MEK inhibitors
KIT	20-30% of CBF-AML	Unfavorable	Yes	Dasatinib, Imatinib
TET2	15-30%	Possibly worse		
ASXL1	5-16%	Unfavorable		
RUNX1	5-13%	Unfavorable		
KMT2A	5-10%	Unfavorable		
TP53	5-20%	Unfavorable	wild type	Idasanutlin
LIZE THE UNIVERSITY OF ALABAMA AT BIRMINGHAM				

MYELODYSPLASTIC SYNDROME (MDS)

- Cytogenetic abnormalities:
 - +8, del(7q) or -7, del(5q) or 5-, -Y, del(20q)
 - By karyotyping
- Molecular abnormalities:
 - EF3B1, RUNX1, TET2, U2AF1, SRSF2, TP53, ASXL1, EZH2, DNMT3A
 - Mutation alone is not diagnostic
 - *TP53* mutation = aggressive behavior
 - SF3B1 associated with MDS-RS

National Comprehensive Cancer

NCCN Guidelines Version 2.2019 Myelodysplastic Syndromes

Network®

NCCN

NCCN Evidence Blocks[™]

GENES FREQUENTLY SOMATICALLY MUTATED IN MDS^a

This table lists gene mutations likely to be somatic (acquired, not congenital) and disease-related and therefore presumptive evidence of MDS. Other mutations in these genes can occur in MDS, as can mutations in other frequently mutated genes like TET2 and DNMT3A, but these may have less certain significance (ie, possible germline variants or less specific for MDS). All mutated genes are not unique to MDS and must be interpreted in the appropriate clinical context (eg, cytopenias, <20% bone marrow blasts, no other AML defining criteria). Not all MDS patients will have a mutation in one of these genes.

Mutated Gene ^b	Examples of Typical Somatic Mutation Types and Locations in Select MDS-Related Genes ^C	Overall Incidence	Clinical Significance
TET2	Nonsense or Frameshift or Splice Site Missense: any in codons 1134–1444 or 1842–1921	20%-25%	Associated with normal karyotypes. More frequent in CMML (40%–60%). Common in Clonal hematopoiesis of indeterminate potential (CHIP) and Clonal cytopenia of undetermined significance (CCUS).
DNMT3A	<u>Nonsense</u> or <u>Frameshift</u> or <u>Splice Site</u> <u>Missense</u> in codons G543, R635, S741, R736, R739, S770, M880, R882,W893, P904, A910	12%-18%	More frequent occurrence in AML, particularly R882 mutations. Common in CHIP and CCUS.
ASXL1	Nonsense or Frameshift	15%-25%	Independently associated with a poor prognosis in MDS and CMML. More frequent in CMML (40%-50%). Common in CHIP and CCUS.
EZH2	Nonsense or Frameshift	5%-10%	Independently associated with a poor prognosis in MDS and MDS/MPN. More frequent in CMML (12%).
SF3B1	Missense: E622, Y623, R625, N626, H662, T663, K666, K700E, I704, G740, G742, D781	20%-30%	Strongly associated with ring sideroblasts and more frequent in MDS-RS (80%). Independently associated with a more favorable prognosis.
SRSF2	Missense or In-Frame Deletion: involving codon P95	10%15%	More frequent in CMML (40%) and associated with a poor prognosis.
U2AF1	Missense: S34, Q157	8%-12%	Associated with a poor prognosis.
ZRSR2	Nonsense or Frameshift	5%-10%	Associated with a poor prognosis.
RUNX1 ^d	Nonsense or Frameshift	10%15%	Independently associated with a poor prognosis in MDS.
TP53 ^d	Nonsense or Frameshift or Splice Site Missense: any in codons except P47S and P72R	8%-12%	Independently associated with a poor prognosis. More frequent with complex karyotypes (50%) and del(5q) (15%-20%). May predict resistance or relapse to lenalidomide.
STAG2	Nonsense or Frameshift or Splice Site	5%-10%	Associated with a poor prognosis.
NRAS	Missense: G12, G13, Q81	5%-10%	Associated with a poor prognosis, particularly in patients predicted to have lower-risk MDS. More frequent in CMML and JMML (~15%).
CBLd	Missense: any in codons 366–420	<5%	More frequent in CMML (10%–20%) and JMML (15%).
NF1 ^d	Nonsense or Frameshift or Splice Site	<5%	More frequent in CMML (5%-10%) and in JMML (30%) where it is often germline.
JAK2	Missense: V817F	<5%	More frequent in MDS/MPN-RS-T (50%); can occur in conjunction with SF3B1.
CALR	Frameshift: after codon 352	<5%	Observed in MDS/MPN-RS&T where it can occur in conjunction with SF3B1 mutations.
MPL	Missense: W515L/K	<5%	Observed in MDS/MPN-RS&T where it can occur in conjunction with SF3B1 mutations.
ETV6 ^d	Nonsense or Frameshift	<5%	Independently associated with a poor prognosis.
GATA2 ^d	Nonsense or Frameshift or Splice Site Missense: in codons 349–398		Associated with a poor prognosis.
DDX41 ^d	Nonsense or Frameshift or Splice Site Missense: in codon R525H		Constitutional (germline) mutations in this gene can occur.
IDH1	Missense: R132	<5%	More frequent in AML.
IDH2	Missense: R140Q, R172	<5%	More frequent in AML. Associated with a poor prognosis.
SETBP1	Missense: E858, T864, I865, D868, S869, G870	<5%	Associated with disease progression. More frequent in CMML (5%-10%) and JMML (7%).
PHF6	Nonsense or Frameshift or Splice Site	<5%	More frequent in cases with excess blasts, but no association with survival.
BCOR	Nonsense or Frameshift or Splice Site	<5%	Associated with a poor prognosis. More frequent in CMML (5%–10%).
FLT3	Internal Tandem Duplication or Missense: in codon D835		Associated with a poor prognosis.
WT1	Nonsense or Frameshift or Splice Site		Associated with a poor prognosis.
NPM1	Frameshift: W288fs*12		Associated with a poor prognosis.
STAT3	Missense: any codons 584-674	<5%	Occurs in large granular lymphocyte leukemia (LGL) associated with MDS; associated with immune bone marrow failure.
PPM1D	Nonsense or Frameshift	~5%	Associated with therapy-related MDS, but not associated with adverse prognosis independent of TP53. Common in CHIP and CCUS.

EIGHT FUNCTIONAL CATEGORIES OF GENES MUTATED IN AML

Epigenetic

- Methylation
- Chromatin modification

Cohesin

Spliceosome

(Dohner H. et al. NEJM 373: 1136-1152, 2015)

FUNCTIONAL GROUP

Functional class	Specific example mutations
Signaling and kinase pathway	FLT3, KRAS, NRAS, KIT, PTPN11, NF1
Epigenetic modifiers (DNA methylation and chromatin modification)	DNMT3A, IDH1, IDH2, TET2, ASXL1, EZH2, MLL/KMT2A
Nucleophosmin	NPM1
Transcription factors	CEBPA, RUNX1, GATA2
Tumor suppressors	TP53, WT1, PTEN, ETV6, PFP6
Spliceosome complex	SRSF2, U2AF1, SF3B1, ZRSR2
Cohesin complex	RAD21, STAG1, STAG2, SMC1A, SMC3

Need to test mutation status of all of these genes.

 \rightarrow Next generation sequencing panel does make more sense

WHAT IS NEXT GENERATION SEQUENCING? – MASSIVELY PARALLEL SEQUENCING

First, think about sequencing entire genome

ALABAMA AT BIRMINGHAM

NGS

Input DNA

Fragmentation

End repair and adapter ligation

Fragment library

Clonal amplification of each fragment

Generation of luminescent or fluorescent images

Conversion to sequence

Just think about "Multiple (MASSIVE) PCR in one tube (PARALLEL)"

Fragmentation \rightarrow Ligation \rightarrow Amplification \rightarrow Sequencing \rightarrow Analysis

RESULTS: BIOINFORMATICS PIPELINE NEEDED

MYELOID COMPREHENSIVE PANEL BY NEXT GENERATION SEQUENCING AT UAB

• 50 gene panel (comprehensive)

ABL1, ASXL1, ATRX, BCOR, BRAF, CALR, CBL, CEBPA, CSF3R, CUX1, DNMT3A, ETV6, EZH2, FBXW7, FLT3, GATA1, GATA2, GNAS, HRAS, IDH1, IDH2, IKZF1, JAK2, JAK3, KDM6A, KIT, KRAS, KMT2A (MLL), MPL, NF1, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PTEN, PTPN11, RAD21, RUNX1, SETBP1, SF3B1, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, ZRSR2

- Agilent HaloPlex HS Custom Panel, started in August 2016
 - Improved base-call accuracy and sensitivity by Molecular Bar Code.
 - Amplicon redundancy (each target base is covered by multiple amplicons) increases accuracy and even coverage.
- Bioinformatics pipeline and reporting tool by PierianDX
- Sequencing ~300 myeloid cases per year

THIS CASE: MYELOID PANEL RESULTS

TEST PERFORMED

Myeloid Comprehensive panel. Targeted next-generation sequencing was performed on this sample of Bone marrow. See under Test Details for more information.

RESULT SUMMARY

Variants Detected	Therapies or Prognostic Indication (in patient's malignancy)	Therapies or Prognostic Indication (in another malignancy)	Clinical Trial Opportunity
CEBPA p.Q83Sfs*77	Favorable Prognosis in Acute myeloid leukemia, Acute myeloid leukemia, disease	No	Yes
CEBPA p.G223Vfs*95	Favorable Prognosis in Acute myeloid leukemia	No	Not evaluated

CLINICALLY RELEVANT RESULTS

EDA Approved Therapies Prognostic	Indication or Other Course of Action
FDA Approved merapies, Prognostic	indication, of Other Course of Action

in patient's tumor type

or

in another tumor type

	Interpretation: A CEBPA p.Q83Sfs*77 variant has been detected at the allelic fraction of 20-30%
	CEBPA gene encodes for CCAAT/enhancer binding protein alpha, a transcription factor that plays a key role in the differentiation of granulocytes. Mutations of CEBPA have been reported in 7% to 11% of patients with AML and the biallelic CEBPA mutations have been associated with a favorable outcome in patients with normal cytogenetics and who lack FLT3-ITD mutations (Renneville A, et al. Blood. 113(21):5090-3; 2009. Fröhling S, et al. J Clin Oncol. 22(4):624-33; 2004. Patel JP, et al. N Engl J Med. 366(12):1079-89; 2012. Preudhomme C, et al. Blood. 100(8):2717-23; 2002, Wouters BJ, et al.; Blood 113; 3088-91; 2009 Mar 26, Blood. 2016;127(20):2391-2405).
CEBPA	Mutations in CEBPA have been reported in 7% to 11% of patients with AML (or 13%-15% of those with NK-AML) and has been associated with a favorable outcome (similar to patients with CRE translocations) with report to increased remission duration and QS outcome

IGV (INTEGRATIVE GENOMICS VIEWER)

🐻 IGV		- 🗆 X
File Genomes View Tra	cks Regions Tools GenomeSpace Help	
Human hg19	✓ dr 19 ✓ dr 19:33,793,046-33,793,102 Go	
	p13.3 p13.2 p13.13 p13.11 p12 p11 q11 q12 q13.11 q13.12 q13.2 q13.31 q13.32 q13.33 q 58 bp	13.41 q13.42 q13.43
aws4_requestf5dec3aab748		· · · · · · · · · · · · · · · · · · ·
sample		~
aws4_request&ef64 Coverage		
aws4_request&X-Amz-Signature 5766db23a4caeo2de5c51240o7 daa3a6611df5008d68dd2b291e	AML biallelic mutation of CEBPA	
Sequence 🔿	T T G G C C T T C T C C T G C T G C C G G C T G T G	G T C G T T G ^
RefSeq Genes	K A K E Q Q R S H Q F L D A L F E K A K E Q Q R S H Q F L D A L F E K A K E Q Q R S H Q CEBPA D A L F E K A K E Q Q R S H Q CEE CEE	D N D N
tracks	9:33,793,074	221M of 259M

TAKE HOME MESSAGES

- Different molecular techniques can be used to aid diagnosis, prognostication, and to guide therapeutic options (predictive marker) in hematologic malignancy.
- Each techniques (FISH, PCR & fragment analysis, single gene testing, next generation sequencing) has pros and cons and it is important to understand its strengths and limitations.
- Molecular and genomic testing will become a part of the standard of care for the management of many hematologic diseases.

HOPE NOT.....

